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Abstract.—Species distribution modeling has seen widespread use in ecology and conservation over the past 
two decades, and as a result many questions regarding the predictive capabilities of new techniques have been 
raised. One modeling approach that has gained popularity is Maxent, which uses presence-only data to model spe-
cies distributions. Although Maxent is ordinarily used to model a species’ fundamental niche at large scales (e.g., 
continental-scale), this technique was used to develop a predictive model for the realized niche and local breeding 
distribution of American Oystercatchers (Haematopus palliatus) in coastal New Jersey, USA. The transferability of 
the predictive model to locations outside training areas was examined in an effort to locate new breeding popula-
tions in previously unsurveyed areas. Initial model validation indicated that Maxent performed well, exhibiting 
good discrimination ability based on analyses of both training data (AUC = 0.95) and test data (AUC = 0.91). 
Ground surveys based on the final model located 185 previously unknown territorial pairs of American Oystercatch-
ers, showing that Maxent was useful to locate new populations in alternative breeding habitats. However, when vali-
dated with an independent dataset, the Maxent model did not perform much better than random (AUC = 0.54), 
reporting high omission (0.76-0.93) and commission (0.40-0.83) error rates. The poor validation was attributed to 
source-sink dynamics rather than to errors in the modeling technique. Future researchers attempting to validate 
species distribution models with ground surveys should take into consideration metapopulation and source-sink 
theory in the design of surveys and interpretation of results. Received 1 October 2015, accepted 23 June 2016.

Key words.—American Oystercatcher, Haematopus palliatus, Maxent, model transferability, model validation, 
species distribution modeling.
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Species distribution modeling has been 
used to project species’ responses to land 
use and climate change, predict invasive spe-
cies geographic limits, identify new species 
or populations, and establish biodiversity 
reserve networks (Raxworthy et al. 2003; Fi-
cetola et al. 2007; Pawar et al. 2007). The in-
creased use of species distribution modeling 
in ecology and conservation in recent years 
has led to a large body of literature compar-
ing various techniques and exploring issues 
such as model application, selection, calibra-
tion, validation and transferability (Araujo 
and Guisan 2006; Elith et al. 2006; Hirzel et al. 
2006; Peterson 2006). Species distributions 

may be modeled using presence-absence 
data, or presence-only data when absence 
data is unavailable. Recently, a presence-only 
modeling technique using a machine learn-
ing approach, Maxent, has gained popular-
ity (Phillips et al. 2006). While the technique 
has been shown to be a useful modeling 
method to determine a species’ realized dis-
tribution (Rebelo and Jones 2010), there are 
several potential pitfalls with using presence-
only data to model distributions that must 
be carefully considered when interpreting 
results (Yackulic et al. 2013).

Underlying the major issues concerning 
distribution modeling are the transferability 
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of models and model validation (or evalua-
tion) (Peterson et al. 2007; Boitani et al. 2008; 
Loiselle et al. 2008; Phillips 2008). Transfer-
ability relates to the ability of a model to pre-
dict a species’ distribution using informa-
tion assembled from somewhere outside the 
focal area. Model validation is the process of 
measuring the accuracy between model pre-
dictions and actual observations, which can 
be done by a variety of methods (Guisan and 
Zimmerman 2000; Rebelo and Jones 2010). 
To evaluate the performance and transfer-
ability of a species distribution model it is 
important to first understand what is being 
modeled so that comparison between model 
results and validation data can be better in-
terpreted. The goal of many species distri-
bution modeling techniques is to model a 
species’ ecological niche, which is then used 
to predict its potential distribution over geo-
graphic space (Soberon and Peterson 2005). 
Many of the recent presence-only modeling 
techniques were designed to model a spe-
cies’ fundamental niche, defined as the set 
of abiotic environmental conditions neces-
sary for a species’ long-term survival. Howev-
er, it is often difficult to distinguish in prac-
tice between a species’ fundamental niche 
and its realized niche, which is a subset of 
the fundamental niche taking into consider-
ation biotic interactions, an important con-
cept that is often ignored in species distribu-
tion models (Chefaoui and Lobo 2008; Lobo 
et al. 2010). Distinguishing between the fun-
damental and realized niche is especially dif-
ficult in highly modified landscapes where a 
species may never be expected to completely 
fill its fundamental niche (Pulliam 2000; So-
beron and Peterson 2005; Peterson 2006).

Clarification of the niche concept is 
considered one of the major challenges in 
species distribution modeling (Araujo and 
Guisan 2006), and is an especially important 
consideration in any a posteriori attempt to 
evaluate the effectiveness of a species distri-
bution model. Errors between predicted and 
actual occurrences should be expected since 
the training data (i.e., occurrence records 
used to develop the models) may better re-
flect the species’ realized niche. In addition, 
the actual occurrence information might 

be further limited within the modeled real-
ized niche if source-sink dynamics are affect-
ing the species’ local distribution (Pulliam 
2000). The modeling method and explana-
tory variables chosen generate different pre-
dictions ranging between the potential and 
realized distributions for the species of inter-
est (Chefaoui and Lobo 2008).

The scale at which the predictions are 
developed also plays an important role in 
deciding whether a species’ fundamental or 
realized niche is being predicted (Fielding 
and Bell 1997; Filz et al. 2013). Models de-
veloped at the regional or continental scale 
using broad-scale predictor variables such as 
temperature, precipitation or elevation may 
better predict the fundamental niche of the 
species. Models using fine-scale predictor 
variables such as nesting substrate type may 
better predict the realized niche (Karl et al. 
2000). Certainly, at a more local scale, fac-
tors such as interspecific competition or hu-
man disturbance play an important role in 
affecting a species’ distribution (Thuiller et 
al. 2004). Thus, consideration of scale must 
be weighed when evaluating model results 
with independent validation data derived 
from ground surveys.

We examined some of the potential is-
sues with species distribution modeling us-
ing the popular presence-only modeling 
technique, Maxent, to predict the breeding 
distribution of American Oystercatchers 
(Haematopus palliatus) in coastal New Jer-
sey, USA. We used a small dataset of known 
breeding records collected at a local scale 
to model the species’ breeding distribution 
over a broader scale in an effort to predict 
the occurrence of American Oystercatchers 
in previously unsurveyed areas, and to evalu-
ate our model’s performance with an inde-
pendent dataset. The distribution of breed-
ing American Oystercatchers in New Jersey 
provides a novel test of distribution models 
because this geographic area represents a 
recently re-colonized part of the species’ 
range. After being extirpated from northern 
parts of their range by the early 1900s due to 
habitat loss and commercial hunting, Ameri-
can Oystercatchers have recently expanded 
north along the Atlantic coast of the United 
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States (Mawhinney et al. 1999; American 
Oystercatcher Working Group et al. 2012). It 
was during this time that the species’ local 
breeding distribution began to change, pos-
sibly facilitating the range expansion (Hum-
phrey 1990), with American Oystercatchers 
found using alternative habitats to breed 
throughout their range (Lauro and Burger 
1989; Shields and Parnell 1990; McGowan et 
al. 2005; Sanders et al. 2008).

Understanding the current breeding 
distribution of American Oystercatchers 
is the first step toward planning conserva-
tion actions needed for this species of spe-
cial concern. American Oystercatchers face 
significant threats throughout their range 
including habitat loss, habitat degradation, 
human disturbance, potential prey resource 
depletion and increasing threats from pred-
ators (Brown et al. 2001, 2005). New Jersey 
is the most densely populated State in the 
United States, and ecosystems in the State’s 
coastal zone are highly altered. At present, 
we do not have a clear understanding of 
American Oystercatcher distribution in ur-
banized coastal ecosystems, nor do we have 
an accurate estimate of the breeding popu-
lation in various parts of the species’ range 
including New Jersey.

The main goals of our study were to: 1) 
understand the effects of urbanization on 
American Oystercatcher distribution at a 
local scale; 2) test the transferability of the 
Maxent model to unsurveyed areas outside 
the training areas in an effort to locate new 
American Oystercatcher populations within 
New Jersey; and 3) evaluate the model’s pre-
dictive capability using an independent data-
set to validate model results.

meThods

Study Area

The present study was conducted along the Atlantic 
Ocean coast of New Jersey (Fig. 1). High density breed-
ing areas where intensive surveys were conducted in 
alternative breeding habitats include: 1) Island Beach 
State Park located in Ocean County (39° 46′ N, 74° 5′ 
W); 2) the Holgate Division of the Edwin B. Forsythe 
National Wildlife Refuge also located in Ocean County 
(39° 30′ N, 71° 17′ W); and 3) Stone Harbor Point lo-
cated in Cape May County (39° 1′ N, 74° 46′ W). The 

habitat available for breeding American Oystercatchers 
at Island Beach included 3.3 km of undeveloped barrier 
beach, a 1.6-km inlet beach along an artificial dike, ap-
proximately 197 ha of adjacent saltmarsh, and an 8-ha 
artificial dredge-spoil island located in Barnegat Bay. 
The habitat at Holgate included 6.0 km of undeveloped 
barrier beach, approximately 74 ha of saltmarsh located 
directly adjacent to the barrier beach strand, and a 5-ha 
naturally-forming inlet island located within Little Egg 
Inlet. The habitat at Stone Harbor included 1.8 km of 
partially developed barrier beach, approximately 23 
ha of saltmarsh located directly adjacent to the barrier 
beach strand, a nearby 126-ha saltmarsh island, and an 
11-ha naturally-forming inlet island located within Her-
eford Inlet.

Surveys

Training data for our species distribution models 
were provided by two datasets of occurrence records 
for breeding pairs of American Oystercatchers (Table 
1; Fig. 1). First, the New Jersey Division of Fish & Wild-
life – Endangered and Nongame Species Program pro-
vided occurrence records for American Oystercatchers 
breeding on barrier beaches along the Atlantic coast 
of New Jersey. This dataset was limited to occurrence 
records on the barrier beach strand since they did not 
conduct systematic surveys for American Oystercatchers 
in alternative habitats. Second, we conducted indepen-
dent surveys during the 2006 breeding season (March-
July) for American Oystercatchers at three high density 
breeding areas located in southern New Jersey (Fig. 1). 
Our surveys were conducted on barrier beach strands 
and in all available alternative breeding habitats at sites. 
We defined alternative breeding habitats as follows: 1) 
saltmarsh habitat (Spartina sp. dominant) directly ad-
jacent to barrier islands; 2) isolated saltmarsh islands 
in back-bay areas behind barrier islands; 3) natural 
inlet islands; and 4) artificial dredge-spoil islands. All 
habitat types were available at each site. Surveys were 
conducted by walking line transects following barrier 
beaches and the perimeters of natural inlet islands and 
artificial dredge-spoil islands. We surveyed saltmarsh 
habitat by boat, following all navigatable shorelines and 
tidal creeks, and by walking line transects spaced 100 
m apart in interior marsh areas. We identified all terri-
torial pairs of American Oystercatchers (i.e., pairs with 
active nests, nest scrapes, or those exhibiting territorial 
behavior) and marked all nests/pairs located with a 
handheld GPS.

We conducted additional surveys to be used as an 
independent validation dataset to evaluate the perfor-
mance of our final species distribution model (Table 1). 
We conducted surveys at 283 randomly selected points 
stratified across the range of predictive values derived by 
our Maxent model output. The validation surveys were 
conducted from 1 May to 15 June, which is the peak 
breeding season for American Oystercatchers in New 
Jersey (Virzi 2008). We selected random survey points 
in all potential American Oystercatcher breeding habi-
tat (i.e., barrier beach and alternative habitats) along 
the New Jersey Atlantic coastline from Sandy Hook (40° 
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Figure 1. Map showing occurrence records for breeding pairs of American Oystercatcher used as training data in 
our species distribution models. The three high density breeding areas where we conducted intensive surveys in 
alternative breeding habitat are outlined in black.
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48′ N, 74° 00′ W) in the north to Cape May (38° 93′ 
N, 74° 95′ W) in the south, and extended 4 km inland 
from the Atlantic coastline. Trained observers recorded 
the presence or absence of territorial pairs of American 
Oystercatchers in a 100-m radius around each random 
survey point, and all pairs located were marked with a 
handheld GPS. Most random survey points were visited 
once; however, we visited a randomly selected subset of 
points (25%) twice to quantify detection probability (p) 
using an occupancy modeling technique (MacKenzie 
et al. 2006). This effort confirmed that a single point 
survey provided adequate detection of territorial pairs 
when present (p = 0.80).

Predictive Model

We chose to use a species distribution modeling ap-
proach developed in a machine-learning environment 
(Maxent Software; Phillips et al. 2006) to model Ameri-
can Oystercatcher distribution using presence-only 
data. Maxent estimates a species’ distribution by find-
ing the probability distribution of maximum entropy 
(i.e., closest to uniform) subject to the constraint that 
the expected value of each environmental variable (or 
derived feature), and/or interactions under this target 
distribution, should match its empirical average (Phil-
lips et al. 2006). Studies have shown that Maxent outper-
forms other presence-only modeling techniques (Phil-
lips et al. 2006; Gibson et al. 2007; Papes and Gaubert 
2007; Ward 2007), and performs well in comparison to 
a wide variety of other species distribution modeling 
techniques (Elith et al. 2006; Phillips et al. 2009; Hertz-
og et al. 2014). However, there are several potential 
pitfalls to the technique stemming from sampling de-
sign and detectability issues that should be considered 
when interpreting results (Yackulic et al. 2013). Maxent 
uses known occurrence records to train explanatory 
models (training data) and uses features composed of 
all pixels in the study area (background data) to pre-
dict the probability distribution over environmental 
space outside the training area. The background data 
provide “pseudo-absences” to create predictive models 
when true absence data are not available. The pseudo-
absences are not meant to be implied absences; they are 
meant to provide a sample of the set of environmental 
or habitat conditions available to the species of interest 
in the study region (Phillips et al. 2009).

Our training data included 67 territorial pair oc-
currence records identified during our 2006 surveys, 

and our background data (pseudo-absences) included 
the recommended 10,000 points drawn randomly from 
our 2006 study areas using Hawth’s Analysis Tools for 
ArcGIS (Beyer 2004). This method for choosing pseu-
do-absences corrects for sampling bias by limiting the 
selection of background data to the area where occur-
rence data were sampled, assuming there is no bias in 
the occurrence data due to survey design (Phillips et al. 
2009; Syfert et al. 2013). To reduce sampling bias in our 
occurrence data, all available habitats within our study 
area were surveyed with the same effort. Further, within 
our training dataset we randomly removed all occur-
rence records located within 200 m of each other to 
reduce over-fitting due to spatial autocorrelation (Dor-
mann et al. 2007). We chose this distance based on our 
knowledge of local American Oystercatcher territory 
sizes and to match the survey design used to collect our 
validation dataset. We ran our Maxent models using the 
recommended default settings for maximum iterations 
(500), convergence threshold (10-5) and regularization 
(1). Convergence threshold refers to the point where 
model iterations are performed allowing models to con-
verge, and regularization refers to model smoothing. 
Generally, increasing these values avoids creating over-
complex models and thus reduces over-fitting of mod-
els. The default settings have been shown to improve 
model performance and reduce over-fitting (Phillips et 
al. 2006; Dudik et al. 2007). We also selected the default 
“auto features” command to allow Maxent to include 
the following feature types in our models: linear, qua-
dratic, product, threshold, hinge and discrete (Phillips 
and Dudik 2008). Finally, we set our model output to 
the default logistic output, which is considered the easi-
est output to conceptualize as it provides a continuous 
variable ranging from 0-1 with higher values indicating 
a higher probability of presence (Phillips et al. 2006). 
Although model performance may be improved by 
species-specific calibration of model parameters, the 
default settings in Maxent have been shown to perform 
well (Radosavljevic and Anderson 2014).

Environmental Variables

Maxent required that we create a set of spatially 
explicit environmental variables as background data 
over which the training data were modeled (Table 2). 
Following the recommendations of Burnham and An-
derson (2002), we selected an a priori set of environ-
mental variables that we hypothesized would influence 

Table 1. Summary of all American Oystercatcher occurrence records used as training and validation data in Maxent 
models.

Habitat Type

Training Data Validation Data

No. Pairs % Total No. Pairs % Total

Barrier Beach 38 56.7 60 19.4
Saltmarsh 22 32.8 213 69.0
Inlet Islands 3 4.5 10 3.2
Dredge-Spoil Islands 4 6.0 26 8.4

Total 67 100.0 309 100.0
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American Oystercatcher distribution. These variables 
can be grouped into three broad categories: 1) type and 
amount of breeding habitat available; 2) type, proximity 
and amount of available foraging habitat; and 3) prox-
imity and density of urbanization. Our original set of 
variables included 15 variables; however, to avoid model 
over-fitting (Rushton et al. 2004; Gibson et al. 2007), we 
reduced this set to nine by removing highly correlated 
variables based on a non-parametric Spearman’s corre-
lation analysis (Ward 2007).

We used available land use/land cover classifica-
tion data provided by the Grant F. Walton Center for 
Remote Sensing and Spatial Analysis to derive all of 
our environmental variables (Table 2). These data were 
used to classify habitat into the following 12 categories: 
1) urbanized habitat; 2) common reed (Phragmites aus-
tralis) dominant wetlands; 3) coastal forest; 4) mixed 
scrub/shrub wetlands; 5) barren land; 6) tidal waters; 
7) smooth cordgrass (Spartina alterniflora) dominant 
high marsh; 8) saltmeadow cordgrass (S. patens) domi-
nant low marsh; 9) vegetated dunes; 10) mudflats; 11) 
barrier island beaches; and 12) other beaches (e.g., in-
let beaches and small, perimeter beaches on back-bay 
islands). These data were used directly as a categorical 
habitat variable in the Maxent models. We also used 
these data to create eight additional continuous vari-
ables used in the models. We rasterized the land use/
land cover polygons in ArcGIS (Environmental Systems 
Research Institute 2007) using a 10-m cell size within 
an area of extent that included a 10-km buffer from 
the Atlantic coastline of New Jersey, and used Spatial 
Analysis Tools (focal analyses) to derive all continuous 
variables. All GIS-derived variables used the same cell 
size and area of extent, which was a requirement of the 
Maxent software.

Based on our knowledge of American Oyster-
catcher breeding ecology and observed localized dis-
tributional patterns at demographic study sites used 
to collect training data, we formulated the following a 
priori hypotheses about the effects of our environmental 
variables on American Oystercatcher distribution at a 
broader, regional scale:

1) Breeding American Oystercatchers were expected 
to be more abundant in alternative habitats such 

as saltmarsh and back-bay islands (i.e., natural in-
let or artificial dredge-spoil islands) than on bar-
rier islands;

2) The availability of sand substrates in alternative 
habitats was expected to have a strong positive 
influence on the probability of American Oyster-
catcher presence;

3) The probability of American Oystercatcher pres-
ence was expected to be greater in suitable breed-
ing habitat that was in close proximity to appropri-
ate foraging habitat. Additionally, the total area of 
available foraging habitat was expected to have a 
positive influence on the probability of presence;

4) American Oystercatcher distribution was expected 
be clumped near Atlantic Ocean inlets since the 
conditions near inlets are favorable for the devel-
opment of appropriate foraging habitat; and

5) American Oystercatchers were expected to avoid 
seemingly suitable breeding habitat that was close 
to highly urbanized areas. Further, as the den-
sity of urbanization increased, the probability of 
American Oystercatcher presence was expected to 
decrease substantially.

Maxent provides several outputs that offer alterna-
tive methods for analyzing the contribution of each 
environmental variable on the projected distribution. 
These include a heuristic estimate of the relative con-
tribution that each variable has on the projected distri-
bution, response curves to examine the direction and 
magnitude of variable contributions, and jackknife tests 
to examine the effects of environmental variables on 
the final model. Higher values for heuristic estimates 
indicate more contribution of variables to model out-
comes. The jackknife tests provide a further indication 
of variable importance by testing for improvement in 
model performance after removing each variable indi-
vidually and by running models with variables in isola-
tion. Separate jackknife tests are conducted for training 
gain, test gain and area under the receiver operating 
characteristic curve for the Maxent model.

Model Validation

Maxent automatically validates model output by 
partitioning the training data into two sets – one that 

Table 2. Description of environmental variables used in Maxent models and a heuristic estimate of the relative 
contribution of each environmental variable on the projected distribution, as provided by Maxent output.

Description % Contribution

Distance from nearest tidal waters 46.8
Habitat classification 33.3
Distance from nearest inlet 10.9
Area of low marsh edge within 100-m radius 3.6
Area of tidal flats within 1-km radius 1.7
Area of urbanization within 100-m radius 1.6
Area of tidal flats within 100-m radius 1.6
Area of low marsh edge within 1-km radius 0.4
Area of urbanization within 1-km radius 0.1
Total Contribution 100.0
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is used to train models and one that is set aside to test 
the models. We chose to partition 25% of the train-
ing data as test data. To evaluate model fit, we used a 
threshold-independent test using the area under the re-
ceiver operating characteristic (ROC) curve. The ROC 
curve plots model sensitivity (or true-positive rate) on 
the y-axis against the commission rate (1 – specificity, or 
false-positive rate) on the x-axis (Swets 1988; Fielding 
and Bell 1997). Models are evaluated based on the area 
under the ROC curve (AUC), which ranges from 0-1. 
A score of one indicates perfect model discrimination, 
a score > 0.75 indicates good model discrimination, a 
score between 0.50-0.75 indicates that the model is per-
forming better than random, and a score < 0.50 indi-
cates poor model discrimination (Swets 1988; Elith et al. 
2006). We recognize that using predefined benchmarks 
such as AUC scores to evaluate model performance may 
not always be best because many alternative species dis-
tribution models may produce similar results (Ashcroft 
et al. 2011), and results may be especially confounded 
if training data are imbalanced (Jimenez-Valverde and 
Lobo 2006).

While validation using data partitioned from the 
training data provides a useful measure of the discrimi-
nation ability of models, it is still preferable to validate 
models with an independent dataset whenever pos-
sible (Pearce and Ferrier 2000; Elith et al. 2006). Un-
til recently, validation of species distribution models 
with independent datasets was rare (Rebelo and Jones 
2010; Filz et al. 2013; Syfert et al. 2013; Hertzog et al. 
2014). To better evaluate model performance, rather 
than relying solely on internal cross-validation in Max-
ent, we performed additional analyses using validation 
data obtained from our independent surveys conduct-
ed in 2007. Presence-absence data collected at 283 
randomly-selected sites in previously unsurveyed areas 
(i.e., areas outside training data sites) were compared 
to occurrence probability values at the survey sites as 
provided by the Maxent model results. We calculated 
ROC curves using the presence-absence data collected, 
which allowed us to compare AUC values derived from 
the validation data with the AUC from the final Maxent 
model. To calculate the ROC curves, we extracted the 
Maxent probability value at each random survey point, 
along with the mean and maximum values within a 110-
m radius buffer around all survey points. We chose to 
include buffer values in our model validation since we 
expected the probability of American Oystercatcher 
presence to be dependent on the amount of suitable 
habitat available within a 100-m survey radius.

Lobo et al. (2008) question the reliance on AUC val-
ues as the sole measure of model validation because it 
ignores predicted probability values, goodness-of-fit and 
spatial extent of the models. Thus, as a further perfor-
mance test we analyzed model omission (false negative) 
and commission (false positive) rates separately using 
information provided in a confusion matrix (Fielding 
and Bell 1997; Anderson et al. 2003), which may be a 
better way to understand the reliability of model results 
(Lobo et al. 2010). We derived several confusion matri-
ces using the different methods to extract Maxent val-

ues from our results as described above, and we applied 
three different thresholds to dichotomize the continu-
ous distribution values (0.30, 0.50 and 0.70). We chose 
a range of threshold values because reliance on a fixed 
threshold value may lead to spurious results, especially 
when there are unbalanced samples (Liu et al. 2005), 
which is the case with our validation data. Finally, we 
calculated Cohen’s kappa values for validating the fi-
nal Maxent model since this statistic is widely used in 
presence-absence modeling, tends to be more forgiving 
when prevalence is low, and is less affected by zero val-
ues in the confusion matrix (Manel et al. 2001). Similar 
to AUC values, kappa values range from 0-1, with values 
of one representing perfect model discrimination and 
values < 0.50 indicating poor discrimination. All statisti-
cal analyses were performed in R (R Development Core 
Team 2012).

resulTs

Predictive Model

The Maxent model predicted a high 
probability of American Oystercatcher pres-
ence in alternative breeding habitats re-
moved from barrier island beaches in New 
Jersey (Fig. 2), especially in the southern 
regions of the State where there is a larger 
amount of saltmarsh habitat available be-
hind the barrier island complex. Results 
of model validation based on ROC curves 
generated using test data partitioned from 
the training data indicated that the Maxent 
model performed well (Fig. 3), exhibiting 
good discrimination ability based on analy-
ses of both the training data (AUC = 0.95) 
and test data (AUC = 0.91). In general, maps 
produced by the Maxent model output pro-
vided predictions that were useful to locate 
new American Oystercatcher populations. 
Ground surveys conducted at 283 random 
sites, selected based on results of the final 
Maxent model, identified 185 previously un-
known territorial pairs of American Oyster-
catchers in coastal New Jersey. However, fi-
nal validation of the Maxent model with the 
independent dataset proved difficult due to 
several potential sources of error described 
in greater detail below.

Explanatory Variables

The heuristic estimates (Table 2) indi-
cated that distance from tidal waters had 
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the greatest influence on predicted Ameri-
can Oystercatcher distribution with prob-
ability of presence substantially higher in 

areas closer to tidal waters. The heuristic 
estimate also indicated that habitat clas-
sification had a very large influence on 

Figure 2. Predicted Maxent distribution displayed using a color ramp of probability values ranging from 0 (blue) to 
1 (red). Predictive maps were masked by New Jersey county boundaries to show the change in predicted American 
Oystercatcher distribution moving from north to south along the Atlantic coastline.
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predicted American Oystercatcher distri-
bution. The response curve for the habi-
tat classification variable (Fig. 4) indicated 
American Oystercatchers preferred low 
marsh (S. alterniflora dominant marsh), 
vegetated dunes, barrier beaches and other 
beaches, including those found on inlets, 
natural or artificial islands and saltmarsh 
margins (variables 8, 9, 11 and 12, respec-
tively). Sandy beaches found in alternative 
habitat had by far the highest probability of 
American Oystercatcher presence (variable 

12), as we hypothesized. While the availabil-
ity of sand substrates appeared to increase 
the probability of American Oystercatcher 
occurrence, nests found in alternative habi-
tat during our 2007 validation surveys (n = 
103) were placed on both sand substrate (n 
= 51) and wrack deposits (n = 53). Examina-
tion of the jackknife tests of training and 
test gains confirmed that the most impor-
tant contributing variables in the final Max-
ent model were distance from tidal waters 
and habitat classification (Fig. 5).

Figure 3. Receiver operating characteristic (ROC) curves for training, test, and independent validation data used 
to evaluate the Maxent distribution model. ROC curves for training and test data provided by Maxent output. ROC 
curve for independent validation dataset calculated using R (R Development Core Team 2012) based on maximum 
Maxent probability value and presence/absence data collected within a 110-m buffer around random survey points.



 oysTercaTcher disTribuTion model  113

Further examination of the jackknife test 
of AUC indicated that several variables were 
more important contributors to the final 
Maxent model than indicated by the heuris-
tic estimate. These variables included three 
that were related to the amount of forag-
ing habitat available both in close proxim-
ity to potential nest sites (within 100 m) and 
distant from nest sites (within 1 km). This 
supports our hypothesis that American Oys-
tercatchers select breeding habitat in close 
proximity to foraging areas. The jackknife 
test of AUC also indicated that the probabil-
ity of American Oystercatcher presence was 
influenced to some degree by the amount of 
urbanization within 1 km of potential breed-
ing areas with a much lower probability in 
highly developed areas (Fig. 5).

Model Validation

Results of independent American Oyster-
catcher surveys conducted along the New Jer-
sey Atlantic coastline during 2007 indicated 
that most breeding American Oystercatch-
ers were distributed in alternative habitats as 

the Maxent model suggested (Table 1; Fig. 
6). Nevertheless, the ROC curve generated 
for our independent validation data indicat-
ed that the Maxent model did not perform 
much better than random (AUC = 0.54). Fur-
ther, the AUC for our validation data was well 
below the AUC for the final Maxent model 
(AUC training data = 0.95), indicating poor 
validation of the model. Cohen’s kappa val-
ues were substantially < 0.50 regardless of the 
threshold used to calculate values, further 
indicating poor model discrimination (Table 
3). Thus, while maps produced as output by 
the Maxent model appear to correctly show 
areas in alternative breeding habitat as having 
high occurrence probabilities, the validation 
data contradict this result when examined at 
a localized scale.

To further examine the potential source 
of errors in our Maxent model, we isolated 
errors of omission and commission by analyz-
ing observed and predicted presence/absence 
patterns of our independent validation data 
in confusion matrices (Table 3). Results based 
on a threshold value of 0.30 are not reported; 
however, the results were similar to those based 

Figure 4. Response curve for the categorical habitat classification variable included in the final Maxent mode, 
which shows American Oystercatcher breeding habitat preferences.
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Figure 5. Jackknife tests of training gain (gain is related to deviance), test gain and AUC (area under the receiver 
operating characteristic (ROC) curve) for the Maxent model.
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on the other thresholds. These matrices indi-
cated that there was a high omission error rate 
(0.76-0.93) regardless of method or threshold 
used to derive the error rate. The commis-

sion error rate was also high (0.74-0.83) when 
a 0.50 threshold was used to derive the rate; 
however, the rate was lower (0.40-0.69) when a 
0.70 threshold was used.

Figure 6. New Jersey American Oystercatcher distribution based on results of 2007 validation surveys. Data pre-
sented includes all territorial pairs located during surveys.
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Table 3. Confusion matrices and error rates derived from presence/absence data collected during 2007 American 
Oystercatcher validation surveys. Matrices based on three methods used to extract Maxent probability values and 
two thresholds. AUCmax = area under the receiver operating characteristic curve (AUC) based on maximum Maxent 
probability value within 110-m radius of points; TP = true positives; FN = false negatives; TN = true negatives; FP = 
false positives; OE = omission error rate; CE = commission error rate; K = Cohen’s kappa.

Measure Threshold

Validation Data

AUCmax = 0.54

TP FN TN FP OE CE K

Point 0.50  9 37 203 34 0.80 0.79 0.05
Mean 0.50  6 40 220 17 0.87 0.74 0.07
Max 0.50 11 35 185 52 0.76 0.83 0.02
Point 0.70  6 40 230  7 0.87 0.54 0.14
Mean 0.70  3 43 235  2 0.93 0.40 0.09
Max 0.70  8 38 219 18 0.83 0.69 0.12

discussion

The maximum entropy modeling tech-
nique that we employed provided valuable 
information regarding the distribution of 
American Oystercatchers in New Jersey’s 
highly urbanized coastal ecosystem. At a re-
gional scale (statewide), the Maxent model 
accurately predicted a higher probability of 
American Oystercatcher presence in alter-
native breeding habitats away from the bar-
rier beach strand, which is the historically 
preferred breeding habitat for the species. 
Ground surveys based on our model located 
185 previously unknown territorial pairs of 
American Oystercatchers in alternative habi-
tats in coastal New Jersey, which more than 
doubled the estimate of the State’s breed-
ing population. As a result of our surveys, 
we now estimate that 81% of the New Jersey 
American Oystercatcher population breeds 
in alternative habitats away from the barrier 
beach strand. However, within the alterna-
tive habitats many of these American Oys-
tercatchers were found at sites with lower 
predictive values, indicating there may be 
other factors influencing local distributional 
patterns.

Visual inspection of the Maxent model 
output maps indicated that American Oys-
tercatchers were less likely to be found in 
areas with a high degree of urbanization; 
however, urbanization variables were of low 
importance in the final model. Still, urban-
ization may partially explain the low prob-
ability of occurrence reported in the north-

ern part of the New Jersey coast, which is 
the most highly developed coastal area in 
the State, due to its effect on other environ-
mental variables that are more important to 
American Oystercatchers. For example, the 
habitat surrounding Barnegat Bay has been 
severely altered (especially in the north) with 
over 70% of the adjacent upland shoreline 
developed and 36% of the total shoreline 
bulkheaded (Lathrop and Bognar 2001). 
This activity limits the amount of alterna-
tive breeding and foraging habitat available 
to American Oystercatchers in this region. 
At the local scale, American Oystercatchers 
had a much higher probability of presence 
in alternative breeding habitats where sand 
was available as a nesting substrate, although 
wrack deposits were also used regularly for 
nest placement in these habitats. Thus, the 
realized niche of the American Oystercatch-
er in New Jersey is predicted to be alterna-
tive breeding habitats such as saltmarsh, 
inlet or back-bay islands that have exposed 
sand available as a nesting substrate.

Based on this visual interpretation of our 
model results, the Maxent model performed 
well at the regional scale, and the predic-
tions appear to be very transferable to areas 
outside the training area. However, at the lo-
cal scale (site-level), we saw that the predic-
tive capability of the final Maxent model was 
poor. Regardless of the method or thresh-
olds used to analyze the final model with our 
independent validation dataset, AUC values 
were below those necessary to indicate good 
model discrimination, and omission errors 
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were unacceptably high. Validation of mod-
els in this manner is expected to be difficult 
due to the incomplete information that is 
used to develop distribution models (Field-
ing 2002), and it may even be conceptually 
impossible to perfectly validate models in 
this manner (Araujo et al. 2005). Other at-
tempts to validate Maxent models with in-
dependent data have also proven difficult 
(Filz et al. 2013; Hertzog et al. 2014). There 
are a number of potential explanations as to 
why we did not see a strong validation of the 
Maxent model using the independent vali-
dation dataset including: 1) over-fitting of 
models; 2) data errors in predictive models; 
3) the current distribution may not reflect 
the realized niche due to disequilibrium 
with environmental conditions as the spe-
cies undergoes a range expansion; and 4) 
the models may accurately predict the real-
ized niche but American Oystercatchers are 
using unsuitable (sink) habitat. We explore 
each of these potential explanations for the 
weak model validation below.

The first two explanations deal with possi-
ble errors in the construction of our Maxent 
model. First, the high omission error rate 
(0.76-0.93) of our validation data indicates 
that American Oystercatchers are occurring 
in high numbers in areas not predicted by 
the distribution model. This result could 
indicate that the Maxent model is over-fit, 
thus seriously under-predicting the amount 
of suitable breeding habitat that is available. 
High AUC values such as those observed in 
our Maxent model may not necessarily indi-
cate good model performance, especially if 
training data were sampled disproportion-
ately (Smith 2013). However, we took mea-
sures to reduce this potential error in our 
survey design for our occurrence data and 
in the model-building process by address-
ing issues known to cause over-fitting such 
as spatial autocorrelation of occurrence 
records, multi-collinearity of environmen-
tal variables, and avoiding excess predictor 
variables with small training datasets. Fur-
ther, over-fitting is prevented in the Maxent 
software by the regularization and feature 
selection processes used in the algorithms 
(Dudik et al. 2007). As such, we do not feel 

that over-fitting is a good explanation for the 
poor model validation.

Second, it is possible that there were 
errors in the background GIS data used 
to construct our environmental layers. 
Ground-truthing of habitat features at ran-
dom survey points, which was performed 
during our surveys, revealed some classifica-
tion errors in the GIS data. For example, we 
identified several areas where the size of the 
habitat features such as small sand banks or 
wrack deposits were below the resolution of 
the land cover dataset; therefore, these areas 
should have received higher predicted suit-
ability values in our final model. The occur-
rence of American Oystercatchers in these 
areas led to misclassified false negatives in 
our confusion matrices. Resolution in GIS 
data is known to cause problems when at-
tempting to validate models with indepen-
dent data collected at different scales (Filz et 
al. 2013). Inclusion of finer scale land cover 
GIS data would lower the omission error rate 
to some degree; however, there were few er-
rors of this type identified. Therefore, the 
omission error rate would still be extremely 
high even if we corrected for these errors.

The goal of our distribution model was 
to predict the realized niche of the Ameri-
can Oystercatchers in New Jersey, and we ex-
pected the actual distribution to overlap this 
niche due to the dispersal ability of the spe-
cies, keeping in mind that a good model of 
a species’ niche may not necessarily coincide 
with the current distribution of that species 
(Phillips 2008). However, the current distri-
bution may not reflect the species’ niche be-
cause it may not be in equilibrium with the 
distribution of environmental conditions 
used to model the distribution (Yackulic et 
al. 2015). This disequilibrium may be par-
ticularly common at the edge of a species’ 
range, and rates of local colonization and 
extinction during range expansion can pro-
duce substantial temporal variation in occu-
pancy-environment relationships (Yackulic 
et al. 2015). Still, Maxent has been shown to 
predict a species’ realized niche well, espe-
cially when attention is paid in the selection 
of pseudo-absences to reduce sampling bias 
as done in this study (Lobo et al. 2010). We 
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feel that our Maxent model predicted the re-
alized niche (highly suitable areas) well for 
American Oystercatchers, supported by the 
observation that these areas had much high-
er densities of territorial pairs (Virzi 2008). 
However, our independent surveys indicat-
ed that American Oystercatchers were also 
widely distributed in areas predicted to be 
unsuitable.

Even if we assume that our Maxent mod-
el is accurately predicting the realize niche 
for American Oystercatchers in New Jersey, 
our sampling design for both training and 
validation data should be considered in the 
interpretation of model results because of 
the potential bias that could result due to 
imperfect detection not being considered in 
our models (Miller et al. 2015; Yackulic et al. 
2015). Detection probability for our training 
data was likely near perfect because: 1) our 
repeated survey methods during intensive 
demographic research provided an almost 
complete census of study areas; and 2) we 
ensured that all potential breeding habitats 
were surveyed with similar effort. However, 
detection probability for our validation data 
was less than one, and this imperfect detec-
tion was not included in our models. Further, 
we did not model heterogeneity in detection 
among habitat types, which could lead to un-
derestimation of occupancy in some habitats 
(Miller et al. 2015). While we do not expect 
that detection probability varied among sites 
in our study, we caution that the influence 
of imperfect detection and unmeasured het-
erogeneity could partially explain the poor 
validation of our Maxent model with the in-
dependent dataset.

In the absence of significant data er-
rors in our models, it is possible that the 
final model accurately predicts the realized 
niche, but American Oystercatchers are us-
ing unsuitable (sink) habitat. Metapopula-
tion theory indicates that species will be 
distributed across a range of habitat suitabil-
ity rather than just in highly suitable areas 
(Morin 1999). Source-sink dynamics further 
predict that a species will often occupy seem-
ingly unsuitable habitat in high density, es-
pecially when dispersal ability is strong (Pul-
liam 1988, 2000). A highly mobile species 

such as the American Oystercatcher could 
be expected to show this pattern. In fact, Ens 
et al. (1995) showed a despotic distribution 
for the Eurasian Oystercatcher (Haematopus 
ostralegus) where individuals often attempt-
ed to breed in less suitable habitat, hypoth-
esized to be due to intense intra-specific 
competition for the most suitable (and most 
productive) habitat. Further, many individu-
als also chose not to breed at all and waited 
in queue for an opening in the most suitable 
habitat.

By comparing maps of the Maxent pre-
dictions (Fig. 2) with the actual distribution 
(Fig. 6), it is clear that American Oyster-
catcher occurrences in unsuitable habitat 
are often located near areas with high suit-
ability values. We interpret this as evidence 
that American Oystercatchers in New Jersey 
are exhibiting a similar despotic distribu-
tional pattern as reported for the Eurasian 
Oystercatcher (Ens et al. 1995). Virzi et al. 
(2016) showed that most American Oyster-
catcher productivity in New Jersey comes 
from the areas predicted to be most suit-
able by the Maxent model; therefore, these 
areas may be acting as sources for the local 
population. Further, low-lying saltmarsh ar-
eas, which are predicted as unsuitable by the 
Maxent model, exhibit lower reproductive 
output indicating these areas may be acting 
as sink habitat. The high density of territo-
rial pairs in areas with high suitability values 
may also indicate that these areas are satu-
rated with American Oystercatchers, forcing 
many individuals to breed in nearby low-
lying saltmarsh sink habitat due to habitat 
limitations. Given the condition of coastal 
ecosystems in New Jersey, it is not surprising 
that such a high proportion of the known 
American Oystercatcher population (69%) 
occurs in unsuitable (sink) habitat.

The high commission error rate (0.40-
0.83) of our validation data indicates that 
our Maxent model predicted American 
Oystercatcher presence in areas where they 
were not observed to occur in our indepen-
dent validation surveys (i.e., the model over-
predicted suitable breeding habitat area). 
This suggests that there may be additional 
factors not included in our models that may 
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be further influencing the local American 
Oystercatcher distribution. For example, it is 
possible that human disturbance on breed-
ing grounds, which was not included in our 
models, may be keeping American Oyster-
catchers from using highly suitable breed-
ing habitat (Virzi 2010). Persistent human 
disturbance on or near breeding grounds is 
known to affect settlement and territory es-
tablishment of birds, causing birds to aban-
don optimal habitat and subsequently settle 
in sub-optimal habitat (Erwin 1980; Van der 
Zande and Vestral 1985; Yalden and Yalden 
1990). Another plausible explanation, how-
ever, is that American Oystercatchers in New 
Jersey simply are not using all available habi-
tat during the recent range expansion, creat-
ing a temporal disequilibrium in occupancy 
patterns (Yackulic et al. 2015). Colonization 
of new habitats (e.g., dredge-spoil islands) 
is likely very important during range expan-
sions; however, we would still expect Ameri-
can Oystercatchers to first colonize barrier 
beach habitat since this historically has been 
the preferred breeding habitat for the spe-
cies. Further, Yackulic et al. (2015) indicate 
that case studies show that species were at or 
near equilibrium two decades after first ar-
riving at a new location, which suggests that 
the New Jersey American Oystercatcher pop-
ulation should have had enough time since 
first recolonizing the State more than two 
decades ago to reach equilibrium.

The small number of potential source 
populations breeding in highly suitable 
habitat in New Jersey does not bode well 
for the viability of the State’s American 
Oystercatcher population. More impor-
tantly, the distributional patterns reported 
in New Jersey are repeated in other urban-
ized ecosystems such as in Maryland, where 
approximately 89% of the known American 
Oystercatcher population breeds in alter-
native habitats (Traut et al. 2006). There 
could be severe consequences to the overall 
American Oystercatcher population along 
the Atlantic coast of the United States if the 
species is indeed expanding its range north-
ward and concurrently shifting its breeding 
habitat into sink habitat. Further research 
is needed to understand American Oyster-

catcher productivity in alternative breeding 
habitats and to identify small, isolated areas 
that may act as local source populations. We 
recommend that surveys based on predic-
tions in a distributional model should be 
designed so that sink populations may also 
be located. This can be achieved by having 
a survey design that includes searches in 
both highly suitable habitat and adjacent 
unsuitable habitat where sink populations 
might be expected. Finally, survey design 
should include methods to enable estima-
tion of heterogeneity of detection prob-
ability among habitat types, and imperfect 
detection should be incorporated into dis-
tribution models.
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